1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368 | function [qrs_amp_raw,qrs_i_raw,delay]=pan_tompkin(ecg,fs,gr)
%% function [qrs_amp_raw,qrs_i_raw,delay]=pan_tompkin(ecg,fs)
% Complete implementation of Pan-Tompkins algorithm
%% Inputs
% ecg : raw ecg vector signal 1d signal
% fs : sampling frequency e.g. 200Hz, 400Hz and etc
% gr : flag to plot or not plot (set it 1 to have a plot or set it zero not
% to see any plots
%% Outputs
% qrs_amp_raw : amplitude of R waves amplitudes
% qrs_i_raw : index of R waves
% delay : number of samples which the signal is delayed due to the
% filtering
%% Method
% See Ref and supporting documents on researchgate.
% https://www.researchgate.net/publication/313673153_Matlab_Implementation_of_Pan_Tompkins_ECG_QRS_detector
%% References :
%[1] Sedghamiz. H, "Matlab Implementation of Pan Tompkins ECG QRS
%detector.",2014. (See researchgate)
%[2] PAN.J, TOMPKINS. W.J,"A Real-Time QRS Detection Algorithm" IEEE
%TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. BME-32, NO. 3, MARCH 1985.
%% ============== Licensce ========================================== %%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
% "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
% LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
% FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
% OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
% SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
% TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
% PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
% LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
% NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
% SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
% Author :
% Hooman Sedghamiz, Feb, 2018
% MSc. Biomedical Engineering, Linkoping University
% Email : Hooman.sedghamiz@gmail.com
%% ============ Update History ================== %%
% Feb 2018 :
% 1- Cleaned up the code and added more comments
% 2- Added to BioSigKit Toolbox
%% ================= Now Part of BioSigKit ==================== %%
if ~isvector(ecg)
error('ecg must be a row or column vector');
end
if nargin < 3
gr = 1; % on default the function always plots
end
ecg = ecg(:); % vectorize
%% ======================= Initialize =============================== %
delay = 0;
skip = 0; % becomes one when a T wave is detected
m_selected_RR = 0;
mean_RR = 0;
ser_back = 0;
ax = zeros(1,6);
%% ============ Noise cancelation(Filtering)( 5-15 Hz) =============== %%
if fs == 200
% ------------------ remove the mean of Signal -----------------------%
ecg = ecg - mean(ecg);
%% ==== Low Pass Filter H(z) = ((1 - z^(-6))^2)/(1 - z^(-1))^2 ==== %%
%%It has come to my attention the original filter doesnt achieve 12 Hz
% b = [1 0 0 0 0 0 -2 0 0 0 0 0 1];
% a = [1 -2 1];
% ecg_l = filter(b,a,ecg);
% delay = 6;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Wn = 12*2/fs;
N = 3; % order of 3 less processing
[a,b] = butter(N,Wn,'low'); % bandpass filtering
ecg_l = filtfilt(a,b,ecg);
ecg_l = ecg_l/ max(abs(ecg_l));
%% ======================= start figure ============================= %%
if gr
figure;
ax(1) = subplot(321);plot(ecg);axis tight;title('Raw signal');
ax(2)=subplot(322);plot(ecg_l);axis tight;title('Low pass filtered');
end
%% ==== High Pass filter H(z) = (-1+32z^(-16)+z^(-32))/(1+z^(-1)) ==== %%
%%It has come to my attention the original filter doesn achieve 5 Hz
% b = zeros(1,33);
% b(1) = -1; b(17) = 32; b(33) = 1;
% a = [1 1];
% ecg_h = filter(b,a,ecg_l); % Without Delay
% delay = delay + 16;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Wn = 5*2/fs;
N = 3; % order of 3 less processing
[a,b] = butter(N,Wn,'high'); % bandpass filtering
ecg_h = filtfilt(a,b,ecg_l);
ecg_h = ecg_h/ max(abs(ecg_h));
if gr
ax(3)=subplot(323);plot(ecg_h);axis tight;title('High Pass Filtered');
end
else
%% bandpass filter for Noise cancelation of other sampling frequencies(Filtering)
f1=5; % cuttoff low frequency to get rid of baseline wander
f2=15; % cuttoff frequency to discard high frequency noise
Wn=[f1 f2]*2/fs; % cutt off based on fs
N = 3; % order of 3 less processing
[a,b] = butter(N,Wn); % bandpass filtering
ecg_h = filtfilt(a,b,ecg);
ecg_h = ecg_h/ max( abs(ecg_h));
if gr
ax(1) = subplot(3,2,[1 2]);plot(ecg);axis tight;title('Raw Signal');
ax(3)=subplot(323);plot(ecg_h);axis tight;title('Band Pass Filtered');
end
end
%% ==================== derivative filter ========================== %%
% ------ H(z) = (1/8T)(-z^(-2) - 2z^(-1) + 2z + z^(2)) --------- %
if fs ~= 200
int_c = (5-1)/(fs*1/40);
b = interp1(1:5,[1 2 0 -2 -1].*(1/8)*fs,1:int_c:5);
else
b = [1 2 0 -2 -1].*(1/8)*fs;
end
ecg_d = filtfilt(b,1,ecg_h);
ecg_d = ecg_d/max(ecg_d);
if gr
ax(4)=subplot(324);plot(ecg_d);
axis tight;
title('Filtered with the derivative filter');
end
%% ========== Squaring nonlinearly enhance the dominant peaks ========== %%
ecg_s = ecg_d.^2;
if gr
ax(5)=subplot(325);
plot(ecg_s);
axis tight;
title('Squared');
end
%% ============ Moving average ================== %%
%-------Y(nt) = (1/N)[x(nT-(N - 1)T)+ x(nT - (N - 2)T)+...+x(nT)]---------%
ecg_m = conv(ecg_s ,ones(1 ,round(0.150*fs))/round(0.150*fs));
delay = delay + round(0.150*fs)/2;
if gr
ax(6)=subplot(326);plot(ecg_m);
axis tight;
title('Averaged with 30 samples length,Black noise,Green Adaptive Threshold,RED Sig Level,Red circles QRS adaptive threshold');
axis tight;
end
%% ===================== Fiducial Marks ============================== %%
% Note : a minimum distance of 40 samples is considered between each R wave
% since in physiological point of view no RR wave can occur in less than
% 200 msec distance
[pks,locs] = findpeaks(ecg_m,'MINPEAKDISTANCE',round(0.2*fs));
%% =================== Initialize Some Other Parameters =============== %%
LLp = length(pks);
% ---------------- Stores QRS wrt Sig and Filtered Sig ------------------%
qrs_c = zeros(1,LLp); % amplitude of R
qrs_i = zeros(1,LLp); % index
qrs_i_raw = zeros(1,LLp); % amplitude of R
qrs_amp_raw= zeros(1,LLp); % Index
% ------------------- Noise Buffers ---------------------------------%
nois_c = zeros(1,LLp);
nois_i = zeros(1,LLp);
% ------------------- Buffers for Signal and Noise ----------------- %
SIGL_buf = zeros(1,LLp);
NOISL_buf = zeros(1,LLp);
SIGL_buf1 = zeros(1,LLp);
NOISL_buf1 = zeros(1,LLp);
THRS_buf1 = zeros(1,LLp);
THRS_buf = zeros(1,LLp);
%% initialize the training phase (2 seconds of the signal) to determine the THR_SIG and THR_NOISE
THR_SIG = max(ecg_m(1:2*fs))*1/3; % 0.25 of the max amplitude
THR_NOISE = mean(ecg_m(1:2*fs))*1/2; % 0.5 of the mean signal is considered to be noise
SIG_LEV= THR_SIG;
NOISE_LEV = THR_NOISE;
%% Initialize bandpath filter threshold(2 seconds of the bandpass signal)
THR_SIG1 = max(ecg_h(1:2*fs))*1/3; % 0.25 of the max amplitude
THR_NOISE1 = mean(ecg_h(1:2*fs))*1/2;
SIG_LEV1 = THR_SIG1; % Signal level in Bandpassed filter
NOISE_LEV1 = THR_NOISE1; % Noise level in Bandpassed filter
%% ============ Thresholding and desicion rule ============= %%
Beat_C = 0; % Raw Beats
Beat_C1 = 0; % Filtered Beats
Noise_Count = 0; % Noise Counter
for i = 1 : LLp
%% ===== locate the corresponding peak in the filtered signal === %%
if locs(i)-round(0.150*fs)>= 1 && locs(i)<= length(ecg_h)
[y_i,x_i] = max(ecg_h(locs(i)-round(0.150*fs):locs(i)));
else
if i == 1
[y_i,x_i] = max(ecg_h(1:locs(i)));
ser_back = 1;
elseif locs(i)>= length(ecg_h)
[y_i,x_i] = max(ecg_h(locs(i)-round(0.150*fs):end));
end
end
%% ================= update the heart_rate ==================== %%
if Beat_C >= 9
diffRR = diff(qrs_i(Beat_C-8:Beat_C)); % calculate RR interval
mean_RR = mean(diffRR); % calculate the mean of 8 previous R waves interval
comp =qrs_i(Beat_C)-qrs_i(Beat_C-1); % latest RR
if comp <= 0.92*mean_RR || comp >= 1.16*mean_RR
% ------ lower down thresholds to detect better in MVI -------- %
THR_SIG = 0.5*(THR_SIG);
THR_SIG1 = 0.5*(THR_SIG1);
else
m_selected_RR = mean_RR; % The latest regular beats mean
end
end
%% == calculate the mean last 8 R waves to ensure that QRS is not ==== %%
if m_selected_RR
test_m = m_selected_RR; %if the regular RR availabe use it
elseif mean_RR && m_selected_RR == 0
test_m = mean_RR;
else
test_m = 0;
end
if test_m
if (locs(i) - qrs_i(Beat_C)) >= round(1.66*test_m) % it shows a QRS is missed
[pks_temp,locs_temp] = max(ecg_m(qrs_i(Beat_C)+ round(0.200*fs):locs(i)-round(0.200*fs))); % search back and locate the max in this interval
locs_temp = qrs_i(Beat_C)+ round(0.200*fs) + locs_temp -1; % location
if pks_temp > THR_NOISE
Beat_C = Beat_C + 1;
qrs_c(Beat_C) = pks_temp;
qrs_i(Beat_C) = locs_temp;
% ------------- Locate in Filtered Sig ------------- %
if locs_temp <= length(ecg_h)
[y_i_t,x_i_t] = max(ecg_h(locs_temp-round(0.150*fs):locs_temp));
else
[y_i_t,x_i_t] = max(ecg_h(locs_temp-round(0.150*fs):end));
end
% ----------- Band pass Sig Threshold ------------------%
if y_i_t > THR_NOISE1
Beat_C1 = Beat_C1 + 1;
qrs_i_raw(Beat_C1) = locs_temp-round(0.150*fs)+ (x_i_t - 1);% save index of bandpass
qrs_amp_raw(Beat_C1) = y_i_t; % save amplitude of bandpass
SIG_LEV1 = 0.25*y_i_t + 0.75*SIG_LEV1; % when found with the second thres
end
not_nois = 1;
SIG_LEV = 0.25*pks_temp + 0.75*SIG_LEV ; % when found with the second threshold
end
else
not_nois = 0;
end
end
%% =================== find noise and QRS peaks ================== %%
if pks(i) >= THR_SIG
% ------ if No QRS in 360ms of the previous QRS See if T wave ------%
if Beat_C >= 3
if (locs(i)-qrs_i(Beat_C)) <= round(0.3600*fs)
Slope1 = mean(diff(ecg_m(locs(i)-round(0.075*fs):locs(i)))); % mean slope of the waveform at that position
Slope2 = mean(diff(ecg_m(qrs_i(Beat_C)-round(0.075*fs):qrs_i(Beat_C)))); % mean slope of previous R wave
if abs(Slope1) <= abs(0.5*(Slope2)) % slope less then 0.5 of previous R
Noise_Count = Noise_Count + 1;
nois_c(Noise_Count) = pks(i);
nois_i(Noise_Count) = locs(i);
skip = 1; % T wave identification
% ----- adjust noise levels ------ %
NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1;
NOISE_LEV = 0.125*pks(i) + 0.875*NOISE_LEV;
else
skip = 0;
end
end
end
%---------- skip is 1 when a T wave is detected -------------- %
if skip == 0
Beat_C = Beat_C + 1;
qrs_c(Beat_C) = pks(i);
qrs_i(Beat_C) = locs(i);
%--------------- bandpass filter check threshold --------------- %
if y_i >= THR_SIG1
Beat_C1 = Beat_C1 + 1;
if ser_back
qrs_i_raw(Beat_C1) = x_i; % save index of bandpass
else
qrs_i_raw(Beat_C1)= locs(i)-round(0.150*fs)+ (x_i - 1); % save index of bandpass
end
qrs_amp_raw(Beat_C1) = y_i; % save amplitude of bandpass
SIG_LEV1 = 0.125*y_i + 0.875*SIG_LEV1; % adjust threshold for bandpass filtered sig
end
SIG_LEV = 0.125*pks(i) + 0.875*SIG_LEV ; % adjust Signal level
end
elseif (THR_NOISE <= pks(i)) && (pks(i) < THR_SIG)
NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1; % adjust Noise level in filtered sig
NOISE_LEV = 0.125*pks(i) + 0.875*NOISE_LEV; % adjust Noise level in MVI
elseif pks(i) < THR_NOISE
Noise_Count = Noise_Count + 1;
nois_c(Noise_Count) = pks(i);
nois_i(Noise_Count) = locs(i);
NOISE_LEV1 = 0.125*y_i + 0.875*NOISE_LEV1; % noise level in filtered signal
NOISE_LEV = 0.125*pks(i) + 0.875*NOISE_LEV; % adjust Noise level in MVI
end
%% ================== adjust the threshold with SNR ============= %%
if NOISE_LEV ~= 0 || SIG_LEV ~= 0
THR_SIG = NOISE_LEV + 0.25*(abs(SIG_LEV - NOISE_LEV));
THR_NOISE = 0.5*(THR_SIG);
end
%------ adjust the threshold with SNR for bandpassed signal -------- %
if NOISE_LEV1 ~= 0 || SIG_LEV1 ~= 0
THR_SIG1 = NOISE_LEV1 + 0.25*(abs(SIG_LEV1 - NOISE_LEV1));
THR_NOISE1 = 0.5*(THR_SIG1);
end
%--------- take a track of thresholds of smoothed signal -------------%
SIGL_buf(i) = SIG_LEV;
NOISL_buf(i) = NOISE_LEV;
THRS_buf(i) = THR_SIG;
%-------- take a track of thresholds of filtered signal ----------- %
SIGL_buf1(i) = SIG_LEV1;
NOISL_buf1(i) = NOISE_LEV1;
THRS_buf1(i) = THR_SIG1;
% ----------------------- reset parameters -------------------------- %
skip = 0;
not_nois = 0;
ser_back = 0;
end
%% ======================= Adjust Lengths ============================ %%
qrs_i_raw = qrs_i_raw(1:Beat_C1);
qrs_amp_raw = qrs_amp_raw(1:Beat_C1);
qrs_c = qrs_c(1:Beat_C);
qrs_i = qrs_i(1:Beat_C);
%% ======================= Plottings ================================= %%
if gr
hold on,scatter(qrs_i,qrs_c,'m');
hold on,plot(locs,NOISL_buf,'--k','LineWidth',2);
hold on,plot(locs,SIGL_buf,'--r','LineWidth',2);
hold on,plot(locs,THRS_buf,'--g','LineWidth',2);
if any(ax)
ax(~ax) = [];
linkaxes(ax,'x');
zoom on;
end
end
%% ================== overlay on the signals ========================= %%
if gr
figure;
az(1)=subplot(311);
plot(ecg_h);
title('QRS on Filtered Signal');
axis tight;
hold on,scatter(qrs_i_raw,qrs_amp_raw,'m');
hold on,plot(locs,NOISL_buf1,'LineWidth',2,'Linestyle','--','color','k');
hold on,plot(locs,SIGL_buf1,'LineWidth',2,'Linestyle','-.','color','r');
hold on,plot(locs,THRS_buf1,'LineWidth',2,'Linestyle','-.','color','g');
az(2)=subplot(312);plot(ecg_m);
title('QRS on MVI signal and Noise level(black),Signal Level (red) and Adaptive Threshold(green)');axis tight;
hold on,scatter(qrs_i,qrs_c,'m');
hold on,plot(locs,NOISL_buf,'LineWidth',2,'Linestyle','--','color','k');
hold on,plot(locs,SIGL_buf,'LineWidth',2,'Linestyle','-.','color','r');
hold on,plot(locs,THRS_buf,'LineWidth',2,'Linestyle','-.','color','g');
az(3)=subplot(313);
plot(ecg-mean(ecg));
title('Pulse train of the found QRS on ECG signal');
axis tight;
line(repmat(qrs_i_raw,[2 1]),...
repmat([min(ecg-mean(ecg))/2; max(ecg-mean(ecg))/2],size(qrs_i_raw)),...
'LineWidth',2.5,'LineStyle','-.','Color','r');
linkaxes(az,'x');
zoom on;
end
end
|